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Abstract

Drilling in brittle crystalline rocks is often accompanied by a fluid loss through the finite number of the major frac-

tures intercepting the borehole. These fractures affect the flow regime and temperature distributions in the borehole and

rock formation. In this study, the problem of borehole temperature variation during drilling of the fractured rock is

analyzed analytically by applying the approximate generalized integral-balance method. The model accounts for differ-

ent flow regimes in the borehole, for different drilling velocities, for different locations of the major fractures intersecting

the borehole, and for the thermal history of the borehole exploitation, which may include a finite number of circulation

and shut-in periods. Normally the temperature fields in the well and surrounding rocks are calculated numerically by

the finite difference and finite element methods or analytically, utilizing the Laplace-transform method. The formulae

obtained by the Laplace-transform method are usually complex and require tedious numerical evaluations. Moreover,

in the previous research the heat interactions of circulating fluid with the rock formation were treated assuming con-

stant bore-face temperatures. In the present study the temperature field in the formation disturbed by the heat flow from

the borehole is modeled by the heat conduction equation. The thermal interaction of the circulating fluid with the for-

mation is approximated by utilizing the Newton law of cooling at the bore-face. The discrete sinks of fluid on the bore-

face model the fluid loss in the borehole through the fractures. The heat conduction problem in the rock is solved

analytically by the heat balance integral method. It can be proved theoretically that the approximate solution found

by this method is accurate enough to model thermal interactions between the borehole fluid and the surrounding rocks.

Due to its simplicity and accuracy, the derived solution is convenient for the geophysical practitioners and can be read-

ily used, for instance, for predicting the equilibrium formation temperatures.
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1. Introduction

A reliable assessment of thermal interaction be-

tween the borehole and the surrounding rock formation

is of considerable interest in a number of geophysical
ed.

mailto:sfomin@csuchico.edu 


Nomenclature

A, B constants which define the equilibrium tem-

perature of the rock formation, tf(z*) =

Az* + B

adi , a
a
i , bi, a

d
i , c

a
i , c

d coefficients in Eqs. (9) and (10),

which are defined by Eqs. (15)

Bi, Bii Biot numbers defined by Eqs. (7) and (17),

respectively

cr, cL specific heat of the rock and fluid,

respectively

cð1Þi , cð2Þi constants of integration in Eqs. (32) and (33)

dr, dL, dp thermal diffusivities of the formation, liq-

uid and drilling pipe, respectively

di parameters defined by Eq. (34)

f non-dimensional geothermal gradient

defined by Eqs. (16)

G flow rate in the drilling pipe

Gi the flow rate in the annulus between the

fractures (i � 1) and i

H depth of the borehole during drilling (a

function of time)

H0 initial depth of the borehole at the onset of

the next drilling cycle

hw heat transfer coefficient on the bore-face

hd, hdi heat transfer coefficients on the inner and

outer walls of the drilling pipe

hi coefficient defined by Eqs. (17)

J0, J1 Bessel functions of the first kind of the order

0 and 1, respectively

qi heat fluxes on the bore-face defined by Eqs.

(22) and (25)

�qi function defined by Eq. (36)

kr, kL, kp thermal conductivities of the formation

and fluid and drilling pipe, respectively

l radius of thermal influence

N number of fractures intercepting the well

r0 external radius of the drilling pipe

rw radius of the borehole

r, z non-dimensional cylindrical coordinates

Tr non-dimensional temperature of the forma-

tion during drilling defined by Eqs. (7)

T a
i , T

d
i non-dimensional temperature of fluid in the

annulus and drilling pipe defined by Eqs.

(16)

Tin non-dimensional temperature injected fluid

defined by Eqs. (16)

ta, td temperatures in the annulus and drilling

pipe, respectively

tr temperature of formation during fluid

circulation

tin temperature of injected fluid

tf equilibrium temperature of formation

t0 temperature in formation defined by Eq. (8)

U0,U
a,U d non-dimensional temperatures defined by

Eqs. (42)

V drilling velocity

vd, vai mean fluid velocities in the drilling pipe and

in the annulus, respectively

zi location of the ith fracture intercepting the

well

Y0, Y1 Bessel functions of the second kind of the

order 0 and 1, respectively

d thickness of the drilling pipe wall

g function defined by Eqs. (31)

kð1Þi , kð2Þi parameters defined by Eq. (35)

�k
ð1Þ
i , �k

ð2Þ
i parameters defined by Eq. (41)

l fluid viscosity

qr, qL densities of rock and liquid, respectively

s time

s�H time, required to drill a well to the depth H

Superscripts

a annulus

d drilling pipe

w wall of the borehole

* dimensional quantities

Subscripts

d drilling pipe

i ith section in the borehole between fracture

(i � 1) and i

L liquid

m mean value

r rock

w wall of the borehole
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applications. The following applications are worth men-

tioning: (i) interpretation of electric logs and estimation

of the formation temperatures from well logs, which re-

quires knowledge of temperature disturbances in the for-

mation produced by circulating fluid during drilling [1–

4]; (ii) optimal design of the drilling bit cooling system

within the high-temperature formation [5] requires
assessment of the heat either delivered from the high

temperature rocks to the drilling bit or transmitted to

the formation from the circulating fluid; (iii) developing

the new technologies and methods in the area of geo-

thermal energy production [6–8]. Normally, temperature

fields in the well and surrounding rocks are calculated

numerically [1,2,9–12] by using a finite difference method.
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The exact analytical solutions of the heat conduction

problem in the rock formation (obtained by Laplace

transformation in [3,13]) are rather complex and require

tedious numerical evaluations. Therefore, they are not

very convenient for an engineering estimation. In a num-

ber of previous publications the heat interaction of the

circulating fluid with the formation was treated under

the condition of constant bore-face temperature [14–

20]. Based on the latter approach and employing some

additional simplifying assumptions, several simple ana-

lytical formulae for the temperature distribution in the

rock formation and for the heat flux on the bore-face

were proposed [17–21]. However, the assumption of

constant bore-face temperature is not realistic and,

therefore, the temperature on the bore-face should be

treated as an unknown function of time and axial coor-

dinate, z, in the mathematical modeling. For this reason,

the previously obtained solutions have a limited range of

practical applicability and can be used only in the case of

highly intensive heat transfer between the circulating

fluid and surrounding media. In the present study New-

ton�s model of convective heat transfer on the bore-face

is employed. Carslaw and Jaeger [22] found an exact

analytical solution of the problem that models heat con-

duction in the rock formation, but their solution is

rather complex.

In order to avoid the complexity of the exact solution

and to obtain a much simpler solution convenient for

geophysical studies, an approximate analytical integral-

heat-balance method proposed by Goodman [23] and

later improved by Volkov et al. [24] is utilized in this

paper. This method was successfully applied by Fomin

et al. [25] for solving the problem of a moving heat

source within the borehole and also by Chugunov

et al. [26] for computing heat fluxes in the case of non-

homogeneous domain. A simplified solution provided

by this method could be also beneficial for its further

incorporation into the model of heat and mass transfer

processes during drilling and exploitation.

Luheshi [1] and Shen and Beck [3] investigated the

influence of the circulating fluid loss through the perme-

able wall of the well. These investigations demonstrate

the drastic effect of the fluid loss during the production

stage on the borehole temperature stabilization at the

shut-in period. In previous studies [1,3,27], the effect of

a circulating fluid loss in a surrounding rock through

the permeable bore-face was investigated under the

assumption that the fluid penetrates in the formation

uniformly along the well�s wall. Apparently, this type

of uniform filtration through the bore-face can occur

only for a sedimentary porous formation, whereas for

crystalline fractured rocks this assumption is not valid.

In the present model, applicable for drilling in brittle

fractured rocks, we assume that the fluid loss occurs pre-

dominantly through the major fractures intercepting the

well and that the number and location of the permeable
fractures is determined by the preliminary geophysical

investigations. This approach is consistent with field

observations that verify the discrete character of the sub-

surface fractures distribution [28].
2. System model and analysis

During drilling, water is injected through the inner

(drilling) pipe and returns up to the surface along an

annulus (a gap between the drilling pipe and the wall

of the borehole). The circulation of fluid is used for cool-

ing a drilling bit and for removing debris from the bore-

hole. Schematically, fluid circulation in the borehole is

illustrated in Fig. 1. The borehole fluid is assumed to

be well stirred laterally. This allows the analysis to be

limited to the cross-sectional averages of the fluid tem-

peratures in the drilling pipe, td(z*,s*), and in the annu-

lus, ta(z*,s*), as functions of the axial coordinate and

time. This is analogous to the assumption of Shen and

Beck [3] that the borehole fluid remains a perfect con-

ductor in a radial direction. Circulation of the fluid in

the borehole during drilling or during the production

stage of the borehole exploitation disturbs the initial

equilibrium temperature of the rock formation, tf, which

is often highly non-linear, especially in the regions of the

strong volcanic activity [5]. However, in a great number

of situations of practical interest the geothermal gradi-

ent, A, within rock formation can be approximately as-

sumed constant [4,12,17,20] and, therefore, the

equilibrium temperature can be approximated by a lin-

ear function of depth, tf(z*) = Az* + B. The heat trans-

fer on the bore-face, r* = rw, is modeled by the

Newton�s law, �krotr/or* = hw(ta � tr), where tr is the

formation temperature disturbed by the fluid circula-

tion. This model accounts for the influence of the flow

regime in the borehole, since the heat transfer coefficient,

hw, differs to an order of magnitude for the laminar,

transient to turbulent, and fully-developed turbulent

flow regimes. The depth of the borehole H during drill-

ing increases with time. Assuming the drilling velocity,

V, to be constant, the variation of the borehole depth

with time can be approximated by equation

H ¼ H 0 þ V s�H , where H0 is the initial depth of the bore-

hole and s�H is the time required to drill a well of the

depth H. Since the drilling speed is relatively high, the

formation temperature below the borehole bottom re-

mains practically undisturbed. In other words, below

the drilling bit where z* > H0 the formation temperature

tr � tf. The time required for drilling bit to reach the

depth z* can be computed from the following equation

s� ¼ ðz� � H 0Þ=V : ð1Þ

Since the radial temperature gradients are typically

100–1000 times greater than temperature gradients in

the vertical direction [1,3], the derivatives of temperature



Fig. 1. Schematic sketch of the model. (a) Physical model of the flow regime and hypothetical borehole—fracture interception; (b)

conventional division of the well into subsections with different flow rates in the annulus.
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with respect to z* can be neglected in the governing

equations and the temperature distribution, tr, in the

surrounding rock during the fluid-circulation period in

cylindrical coordinates (r,z) can be described by the fol-

lowing non-dimensional mathematical models:

Model 1. In the rock around the preliminary com-

pleted upper part of the borehole (in the interval

0 < z* < H0), for 1 < r < 1, s > 0, the temperature dis-

tribution is governed by the following equation:

oT r

os
¼ 1

r
o

or
r
oT r

or

� �
; ð2Þ

with the following boundary conditions

r ¼ 1; �oT r=or ¼ Bi½T aðz; sÞ � T r�; ð3Þ

lim
r!1

T r < 1; ð4Þ

and the following initial condition

s ¼ 0; T r ¼ 0: ð5Þ

Model 2. Temperature field in the rock around the

lower part of the borehole for s* > (z* � H0)/V, where

drilling takes place (the interval H0 < z* < H), also can
be modeled by Eq. (2) and boundary conditions (3)

and (4), whereas due to relationship (1), the initial con-

dition (5) should be replaced with

s ¼ drHðz� H 0=HÞ
r2wV

; T r ¼ 0: ð6Þ

The non-dimensional variables in Eqs. (2)–(6) are de-

fined by the following relationships:

r ¼ r�
rw

; z ¼ z�
H

; Bi ¼ hwrw
kr

; s ¼ s�dr

r2w
;

T r ¼
tr � t0
AH

; T a ¼
ta � t0 � 1

Bi
ot0
or

� ���
r¼1

AH
; ð7Þ

where temperature in the formation at the onset of circu-

lation, t0(r*,z*), satisfies Eq. (2). In a particular case it

may be equal to the equilibrium formation temperature,

t0 ¼ tf ðz�Þ ¼ Az� þ B: ð8Þ

Fluid flow and heat transfer within the borehole are

greatly affected by the fluid loss through the natural rock

fractures intersecting with the well. In a brittle rock a

substantial portion of the fluid in the borehole leaks

away into surrounding rock masses through a finite

number of major intercepting fractures. Conventionally,
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it can be assumed that in total N major fractures inter-

cept the well. Schematically it is illustrated in Fig. 1. It

is assumed that the location of each ith fracture is

known and defined by its axial coordinate, z� ¼ z�i .
Since the flow rates Gi and Gi+1 in the annulus above

and below the ith fracture, respectively, are different

(due to the fluid loss through this fracture), the heat

transfer rates and temperatures are also different. Within

the ith section of the borehole between two fractures lo-

cated at coordinates z� ¼ z�i�1 and z� ¼ z�i , the flow rate

in the annulus is denoted by Gi, the temperatures in the

drilling tube by tdi and in the annulus by tai . Then heat

transfer in the borehole divided into N + 1 sections can

be modeled by the following non-dimensional equations:

cd
oT d

i

os
þ oT d

i

oz
¼ adi ðT a

i � T d
i Þ þ f ðzÞ; ð9Þ

ca
oT a

i

os
� oT a

i

oz
¼ �aai ðT a

i � T d
i Þ � biðT a

i � T wÞ � f ðzÞ;

ð10Þ

where i = 1,2, . . . , N + 1. These equations must be

solved subject to the following boundary and initial

conditions:

z ¼ z0 ¼ 0; T d
1 ¼ T in; ð11Þ

z ¼ zi; T a
i ¼ T a

iþ1; T d
i ¼ T d

iþ1; ði ¼ 1; 2; . . . ;NÞ;
ð12Þ

z ¼ zNþ1 ¼ 1; T a
Nþ1 ¼ T d

Nþ1; ð13Þ
T 1ðr; sÞ ¼ 1� 2Bii
p

Z 1

0

ep
2s

p
fJ 0ðprÞ½pY 1ðpÞ þ BiiY 0ðpÞ� � Y 0ðprÞ½pJ 1ðpÞ þ BiiJ 0ðpÞ�gdp

f½pJ 1ðpÞ þ BiiJ 0ðpÞ�2 þ ½pY 1ðpÞ þ BiiY 0ðpÞ�2g
; ð19Þ
s ¼ 0; T a
i ¼ T d

i ¼ 0; ði ¼ 1; 2; . . . ;N þ 1Þ: ð14Þ
where zN+1 = 1 and z0 = 0 correspond to the bottom and

the mouth of the borehole, respectively. Hence, in the

general case of N fractures intersecting the borehole,

the heat transfer process is governed by 2(N + 1) Eqs.

(9) and (10) defined in the intervals (zi�1,zi), where

i = 1,2, . . . , N + 1. In the particular case, when there

are no fractures and no fluid loss in the formation, heat

transfer in the borehole can also be described by Eqs. (9)

and (10) and boundary conditions (11), (3) and (14)

(condition (12) should be dropped), where N should be

set to zero and i should be set to unity.

In Eqs. (9)–(14) the non-dimensional variables and

parameters are defined as follows:

adi ¼
2pr0Hhi
cLG

; aai ¼
2pr0Hhi
cLGi

; bi ¼
2pkwHBii

cLGi
;

cd ¼ Hdr

r2wv
d
; cai ¼

Hdr

r2wv
a
i
; zi ¼

z�i
H

; ð15Þ
T a
i ¼

tai � t0
AH

; T d
i ¼

tdi � t0
AH

; T w ¼ T rjr¼1;

T in ¼
tin � t0jz¼0

AH
; f ¼ � 1

A
ot0
oz� ð16Þ

hi ¼
1

½ð1=hdÞ þ ð1=hai Þ þ ðd=kdÞ�
;

vai ¼
Gi

pðr2w � r20ÞqL

; vd ¼ G
pr20qL

; Bii ¼
rwh

w
i

kw
: ð17Þ

The values of the heat transfer coefficients hd, hai , and
hwi depend on the flow regime in the borehole and thermo-

physical properties of the fluid. They can be calculated

using experimentally obtained correlations, which are

well documented and available in [29]

hd ¼ 0:021ðRedÞ0:8ðPrLÞ0:43ðPrL=PrdÞ0:25kL=ð2r0Þ;
hwi ¼ 0:021ðReai Þ

0:8ðPrLÞ0:43ðPrL=PrwÞ0:25kL=ð2ðrw � r0ÞÞ
ð18Þ

where

Red ¼ qLv
d2r0
l

; Reai ¼
qLv

a
i 2ðrw � r0Þ

l
;

PrL ¼ l
qLdL

; Prd ¼
l

qddd

; Prw ¼ l
qrdr

:

The temperature on the wall of the borehole Tw can

be determined from the solution of the heat conduction

problem in the rock formation, which is given by Eqs.

(2)–(5).

The exact solution Tr of Eqs. (2)–(5) for the temper-

ature T a
i ¼ 1 was found by Carslaw and Jaeger [22], as
where J0(p) and J1(p) are Bessel functions of the first

kind of the order 0 and 1, respectively; Y0(p) and Y1(p)

are Bessel functions of the second kind of the order 0

and 1, respectively.

For the arbitrary T a
i , due to the Duhamel theorem,

solution of Eqs. (2)–(5) can be presented in the following

form

T r ¼
o

os

Z s

0

T a
i ðz; pÞT 1ðr; s� pÞdp: ð20Þ

The heat flux on the bore-face, qw, can be readily

computed from Eqs. (19) and (20), as

qw ¼ � 1

Bii

oT r

or

����
r¼1

¼ T a
i ðz; sÞ þ

Z s

0

T a
i ðz; pÞ

o

os
qiðs� pÞdp; ð0 < s < scÞ;

ð21Þ



i
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where

qi ¼� 1

Bii

oT 1

or

����
r¼1

¼ 4Bii
p2

�
Z 1

0

e�p2sdp

f½pJ 1ðpÞ þBiiJ 0ðpÞ�2 þ ½pY 1ðpÞþBiiY 0ðpÞ�2gp
:

ð22Þ

As it can be seen, the exact solution given by Eqs.

(19)–(22) is rather complex. Applying the approximate

generalized integral balance method, Chugunov et al.

[26] proposed a simple approximate solution for the

problem described by Eqs. (2)–(5), as

T r ¼
T a

i
Bii lnðl=rÞ
1þBii lnðlÞ ; r 6 l

0; r > l

(
ð23Þ

qwðsÞ ¼ T a
i qi; ð24Þ

where

qi ¼ 1=½1þ Bii lnðlÞ� ð25Þ

and l is the so-called radius of thermal influence, which

is defined as

l ¼ 1þ 2:084þ 0:704Bii
1:554þ 0:407Bii

ffiffiffi
s

p
: ð26Þ

Comparison with an exact solution (19)–(22) proves

the sufficient accuracy of the approximate solution

(23)–(26) for simulating the heat flux on the bore-face

and the temperature field in the formation. In [26] it

was shown that these solutions practically coincide for

all values of parameter Bii and time s (see Figs. 4 and

5 in [26]). Based on this approximate solution, the tem-

perature on the well�s wall within the interval

0 6 z 6 H0/H can be presented in an explicit form as

follows

T w ¼ T rjr¼1 ¼ T a
i ðz; sÞð1� qiðsÞÞ ð27Þ

Further, denoting ~s ¼ s� drHðz�H0=HÞ
r2wV

in the Model 2

(boundary value problem (2)–(4) and (6)), it can be eas-

ily converted to the problem (2)–(5), which was solved

above. As a result, the solution of the Eqs. (2)–(4) can

be presented in the following form

T w ¼ T rjr¼1 ¼ T a
i ðz; sÞ 1� qi s

1� z
1� H 0=H

� �� �
; ð28Þ

where H0/H 6 z 6 1 and qi is defined by Eqs. (25) and

(26).

It can be readily shown that shortly after onset of the

fluid circulation in the borehole, starting from the finite

time s = ss, the heat flow in the borehole stabilizes and

becomes quasi-steady. A series of computations per-

formed by Raymond [12] for the unsteady model of
the borehole fluid circulation indicated that shortly after

the ‘‘bottom comes up’’ the thermal behavior of a mud

system begins to approach a slow, logarithmic decline.

Such decline suggests that diffusion of heat into and

out of the formation is a controlling factor. In this case

the unsteady-state terms in Eqs. (9) and (10) become

negligible. This is quite reasonable because of the greater

volume and lower thermal conductivity of the formation

surrounding the borehole. In mathematical terms this

means that the time of stabilization can be approxi-

mately assessed by the formula ss � H/vd + H/va. In a

quasi-steady model the temperature is a function of

time, but its derivative with respect to time is negligibly

small and, therefore, can be ignored, and the dependence

of time is introduced only through the formation tem-

perature, which is presented by the approximate formu-

lae (25)–(28). Accounting for these formulae, for the

quasi-steady heat transfer regime Eqs. (9) and (10) can

be reduced to

oT d
i

oz
¼ adi ðT a

i � T d
i Þ þ f ð29Þ

oT a
i

oz
¼ aai ðT a

i � T d
i Þ þ biT a

i qi½sgðzÞ� þ f ; ð30Þ

where the borehole depth during drilling increases with

time and can be computed by equation H ¼ H 0 þ
V sr20=dr and function g(z) is defined by the following

formula:

gðzÞ ¼
1; 0 6 z 6 H 0=H ;

ð1� zÞ=ð1� H 0=HÞ; H 0=H 6 z 6 1:

	
ð31Þ
3. Solution and discussion of the results

In further computations it is assumed that the initial

formation temperature can be approximated by the lin-

ear function of depth, i.e. t0 = tf(z) = Az* + B, which

leads to f = �1 in Eqs. (29) and (30). Correctness of this

approximation is well documented in literature related

to measurements of equilibrium formation temperature

[20]. The numerical solution of this system of first-order

differential equations with boundary conditions (11)–

(13) does not present any difficulties. Unfortunately, in

the general case Eqs. (29) and (30) cannot be solved ana-

lytically because qi is a function of axial coordinate z.

However, if there is only fluid circulation in the bore-

hole, without drilling (H = H0) (this regime is used in

order to clean up the borehole and to remove the

debris), then at this circulation stage of the borehole

exploitation qi is defined by Eq. (25), which depends

on time only. For this particular case, Eqs. (29) and

(30) possess a simple close-form solution, namely

T d ¼ cð1Þi expðkð1Þi zÞ þ cð2Þi expðkð2Þi zÞ þ di; ð32Þ
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T a
i ¼ cð1Þi ð1þ kð1Þi =adi Þ expðk

ð1Þ
i zÞ þ cð2Þi ð1þ kð2Þi =adi Þ

� expðkð2Þi zÞ þ ðdi þ 1=adi Þ; ð33Þ

where

di ¼ �ðaai � adi þ biqiÞ=ðadi biqiÞ; ð34Þ

kð1;2Þi ¼0:5 ðaai �adi þbiqiÞ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaai �adi Þ

2þ2ðaai þadi ÞbiqiþðbiqiÞ
2

q �
; ð35Þ

and i = 1,2,3, . . . , N + 1.

In Eqs. (32) and (33) the coefficients of integration

cð1Þi and cð2Þi can be readily obtained by satisfying the

boundary conditions (11)–(13). Since the only reason

why the solution of Eqs. (29) and (30) cannot be ob-

tained analytically in the form of formulae (32), (33) is

the dependence of the heat flux qi on variable z, it would

be interesting to try to replace function qi [sg(z)] in Eq.

(30) with its mean value averaged over coordinate z,

namely

�qiðsÞ ¼
Z 1

0

qi½sgðzÞ�dz: ð36Þ

Fig. 2 illustrates time variations of the function

qi[sg(z)] for different z and Bi. Even for relatively low

Biot numbers (e.g. Bi = 1) for different z, the discrepancy

of the function qi[sg(z)] from its mean value �qiðsÞ is rel-
atively small. For the bigger values of Biot number

(Bi > 5) the plots of �qi and qi practically coincide. Hence,

the mean function �qiðsÞ can be used in Eq. (30) as a quite

accurate approximation of qi[sg(z)]. In this case, the

solution of Eqs. (29) and (30) has the same form as

the obtained above solution (32), (33), where the func-

tion qi should be simply replaced by �qi defined by equa-

tion (36). Finally, substituting solution (32) and (33)
q, q

Fig. 2. Variation of the bore-face heat flux q[sg(z)] computed by Eqs.

different z and Bi during drilling to the depth H = 2000m starting from

solution q for z = 0.2; dashed line—solution q for z = 0.6; dash-dotte
(where qi is replaced by �qi) into the boundary conditions

(11)–(13), the following system of linear algebraic equa-

tions for unknown constants cð1Þi and cð2Þi is obtained

cð1Þ1 þ cð2Þ1 ¼ T in � �d1 ð37Þ

cð1Þi expðkð1Þi ziÞ þ cð2Þi expðkð2Þi ziÞ � cð1Þiþ1 expðk
ð1Þ
iþ1ziÞ

� cð2Þiþ1 expðk
ð2Þ
iþ1ziÞ ¼ �diþ1 � �di ð38Þ

cð1Þi adiþ1k
ð1Þ
i expðkð1Þi ziÞþcð2Þi adiþ1k

ð2Þ
i expðkð2Þi ziÞ

�cð1Þiþ1a
d
i k

ð1Þ
iþ1 expðk

ð1Þ
iþ1ziÞ�cð2Þiþ1a

d
i k

ð2Þ
iþ1 expðk

ð2Þ
iþ1ziÞ¼adi �adiþ1

ð39Þ

cð1ÞNþ1k
ð1Þ
Nþ1 expðk

ð1Þ
Nþ1Þ þ cð2ÞNþ1k

ð2Þ
Nþ1 expðk

ð2Þ
Nþ1Þ þ 1 ¼ 0 ð40Þ

where i = 1,2,3, . . . , N and �di ¼ �ðaai � adi þ bi�qiÞ=
ðadi bi�qiÞ, and

�k
ð1;2Þ
i ¼ 0:5 ðaai � adi þ bi�qiÞ:

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaai � adi Þ

2 þ 2ðaai þ adi Þbi�qi þ ðbi�qiÞ
2

q �
: ð41Þ

This system of 2(N + 1) linear equations regarding

2(N + 1) unknown constants cð1Þi and cð2Þi is solved by a

sweep method.

For better graphical illustration of numerical results,

the equilibrium temperature in formation, t0, and tem-

peratures in the borehole, ta and td, are represented by

the following non-dimensional functions

U 0 ¼
t0 � B
AH

¼ z; U a ¼ T a þ U 0; Ud ¼ T d þ U 0

ð42Þ

The influence of fluid loss through the fracture on a

temperature distribution in the borehole is illustrated
τ

Bi = 1

Bi = 5
B i = 1 0

(25), (26) and (31) and its mean value �q with respect to time for

the depth H0 = 1000m. Solid line—mean value �q; dotted line—

d line—solution q for z = 0.8.
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Fig. 3. Temperature distribution in the borehole for drilling velocity V = 0.04m/s, injection flow rate G = 30kg/s and drilling time 70h.

Solid lines—temperature in a drilling pipe Ud; dashed line—temperature in the annulusUa; dot-dash line—equilibrium temperature U0.

(1)—fluid loss through the single located at z = 1/3; (2)—no fluid loss; (3)—equilibrium temperature.
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Fig. 4. Temperature distribution in the borehole for drilling velocity V = 0.04m/s injection flow rate G = 10kg/s and drilling time 70h.

Solid lines—temperature in a drilling pipe Ud; dashed line—temperature in the annulusUa; dot-dash line—equilibrium temperature U0.

(1)—fluid loss through the single located at z = 1/3; (2)—no fluid loss; (3)—equilibrium temperature.
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in Figs. 3 and 4. Even though the derived above model

allows computing the temperature distribution for the

case of several fractures intersecting the borehole, obvi-

ously, considering a particular case when the fluid loss

occurs through a single major fracture that intercepts

the borehole can readily elucidate this effect. In numeri-

cal computations presented in Figs. 3 and 4 it is assumed

that the fracture intersects the borehole at the depth of

1000m (z = 1/3) and the borehole is drilled to the depth

of 3000m (z = 1) starting from the pointH0 = 1000m. In

Fig. 3 the injection flow rate through the drilling pipe, G,

is equal to 30kg/s, half of the injected water flows away

from the borehole through the fracture and half returns

to the surface so that the outflow rate is 15kg/s. In Fig. 4
the injection flow rate through the drilling pipe, G, is

equal to 10kg/s, half of the injected water flow goes

away from the borehole through the fracture and half

returns to the surface so that the outflow rate is 5kg/s.

As it can be seen, temperatures in the borehole are sig-

nificantly affected by the existence of fractures that inter-

cept the borehole and through which the injected fluid

flows away into the rock formation. The fluid loss of

the circulating fluid leads to reducing the borehole tem-

perature since the flow rate in the upper part of the

annulus is lower and it decreases the intensity of heat

transfer (smaller hw and ha) near the borehole mouth.

The comparison of Figs. 3 and 4 demonstrates that for

the smaller injection flow rate, the borehole fluid has
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higher temperatures. For instance, as it can be seen, the

triple reduction of the flow rate leads to a double

increase of the fluid temperature. Although for a smaller

flow rate the heat transfer is less intensive, the longer

time during which the injected fluid remains in the bore-

hole, and therefore is subjected to longer heating, has

more profound effect on the fluid temperature.

The mathematical model discussed in this paper that

accounts for the fluid loss through the discrete fractures,

which intercept the well, can be readily applied for com-

puting the borehole temperatures without the fluid loss

(this case is denoted by (1) in Figs. 3 and 4). The above

results can be used for validation of the proposed model

by comparing these curves with numerical results ob-

tained in the previous studies of the borehole tempera-

tures distribution without the fluid loss. For example,

results available in [10–15] are in good agreement with

the solutions presented in Figs. 3 and 4.
4. Conclusions

The following conclusions are drawn:

1. A mathematical model for the temperature distribu-

tion in the drilling borehole that accounts for the

fluid loss through discrete fractures that intercept

the borehole is proposed.

2. The model is simplified by applying the accurate

explicit formula for the heat flux on the bore-face

instead of using a numerical finite difference solution

or a complex exact analytical solution found by

Laplace transform.

3. A closed-form approximate solution for the tempera-

ture distribution in a borehole is obtained. This solu-

tion can be used for analyzing the effect of different

parameters on the borehole temperature. Its accuracy

can be validated by a comparison with solutions

available in literature for the ‘‘no fluid loss’’ case.

4. The fluid leakage through the fracture intercepting

the borehole leads to the reduction of the borehole

temperature. This fact is beneficial for the exploita-

tion of the drilling bit within the high-temperature

rock formation [5] when the efficiency of the cooling

system is of major concern. This effect (reduction of

the borehole temperature) can be also reached by

increasing the injection flow rate.
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